Tag Archives: See

I Love Typography

On 10 July 2009 Steve Kehlet said: For a while I’ve been reading I Love Typography, which describes itself as a means of bringing the subject of Typography to the masses. I am definitely part of the masses, I know I don’t have the critical eye and patience needed for good page design, as made evident by my site with its uninspired look, horrible colors, blocky layout, and general failure to render properly in any browser but Safari. But as I Love Typography says, it is truly inspiring at times to see these beautiful fonts and what people have done with them. Each article showcases numerous typefaces and sometimes works of art created with them. It’s a fascinating read on a beautiful topic I now realize I know so little about.” So he starts to look at it:

For the full story, see 1 <3 Typography and the I Love Typography site.

Share

Discrete Continuity

sticker

Sticker Shock by SPEEDtv

See the sticker on the tire. It is a discrete rectangle. A fixed piece of information, it is not continuous.

tire

Tire by Mayarishi

However, once the wheel goes in motion, the sticker can no longer be seen – the discrete shape appears to be a continuous blur.

Therefore, discrete elements put into dynamic motion only appear to be continuous. How can this be useful to take discrete instances of knowledge and make them continuous?
Continuity, even if only simulated, can benefit the digital age in many ways. For example, look at all the discrete papers published every day. Each one is a set of information like the sticker but what would happen if groups of paper were set in motion, to force continuity between them? What shape would serve this purpose best? A circle like the tire? Some shared, continuous knowledge would require far more complex geometry.

NotreDame

Notre Dame by Chi King

Please refer to this video Blaise Aguera y Arcas: Photosynth Demo wherein Flickr images are assembled to construct the Notre Dame Cathedral. The only way to do this is to know the geometry of the cathedral.

What is the geometry of knowledge? How can continuity be implied using shared geometry and many points of view more productively?

PerfectGeometry

Perfect Geometry by Dancing Fishes

There is no way to address the topic without also thinking about slightly different versions of the same thing. Examples using music are below. The same notes and words are used but the songs and performances, even the performance requirements, are different. Each piece of music is discrete, the continuity is the fact they are the same song by different artists ~ in different times and places.

LedZepstringquartet

Going to California by Led Zeppelin and the String Quartet

JimiStevie

Little Wing by Jimi Hendrix and Steve Ray Vaughn

gloria?cake

I Will Survive by Gloria Gaynor and Cake

 

Share

Juxtaposing Dynamic Forms

Below are images from Dale Chihuly’s Gardens and Glass installed at botanical gardens all over the world. Perfect juxtapositions of beautifully crafted objects, once fluid and rapidly changing, now fixed in time. Purposefully and collaboratively placed in similar backgrounds. The living objects continue to slowly change and grow in ways that are impossible to observe in a single visit. The now-fixed and eternally-changing are simply together, enhancing each other’s beauty, creating a place.

What can designers of modern, fluid, information patterns learn from this stunning collaboration between botany and art? How can cleaning your data and preparing records for deep, widely distributed archiving feel more like working in your garden? If dynamic growing data collections could be shown, and tended to, in forms that were able to be made more beautiful over time…what do newly fixed data structures look and act like in context of slowly changing knowledge domains forming beautifully tended backgrounds?

To really see, be surrounded by, experience and wonder for yourself, please go to the Phipps Conservatory in Pittsburgh PA before November 11, 2007 – where juxtaposing dynamic forms is made real.

chilhuly21

chilhuly20 chilhuly19

chilhuly18
chilhuly17 chilhuly16

chilhuly15

chilhuly14
chilhuly13 chilhuly12

chilhuly11 chilhuly10

chilhuly9

chilhuly8

chilhuly7

chilhuly6

chilhuly5

chilhuly4

chilhuly3

chilhuly2

chilhuly1

Share

Rework Old Work

Per request by Susan Turnbull at GSA, the position paper below from the American Association of Geographers Annual Meeting a few years ago is resurfacing to update and present at the workshop Mapping the Navigable Waters of Public Information: Connecting People to Science and Scholarly Knowledge. Images from AAG slides will be interspersed soon, both text and images will be updated.

________________

Position Paper for Mapping Humanities Knowledge and Expertise in the Digital Domain held at the Annual Meeting of the Association of American Geographers (AAG), Denver, CO, April 5-9, 2005. Organized by Katy Borner & Andre Skupin. By Deborah L. MacPherson, Projects Director
Accuracy&Aesthetics, PO Box 52, Vienna VA 22183 USA

1

Part 1 This session

1.1. Describe your main interest in this session.
I am interested in participating in this session because I am bothered by what a map of all of humanity’s knowledge and expertise would look like, how it would function, and how or why people would use it. On the one hand, it seems very straightforward to compare this type of map with “regular maps” that show geographical features, relationships, distances, and even how each of these aspects may change over time or be influenced by people, technology or events. On the other hand, most “regular maps” capture and simplify features, relationships and distances that can actually be measured. Information maps are different, we are not sure how much is there.

2

1.2. Which major technical challenges do you see for Mapping Humanity’s Knowledge and Expertise in the Digital Domain, as laid out in the session description?
There are countless reasons why each knowledge domain needs to use their own numbering systems, methods of describing and citing pieces of work in relation to other work to form a whole. By trying to consolidate all of humanity’s knowledge and expertise into one shared system, there will need to be significant, possibly permanently damaging, mathematical and conceptual reductions down to a level where the details and relationships can no longer be seen.

3

1.3. Which major non-technical challenges do you foresee?
Changing the way people work and organize their ideas and information is worse than many technical problems because look at the progress that has already been made since 1990 when the total number of websites was 1. Tim Berners-Lee’s prototype. All of humanity’s knowledge and expertise is much older, interconnected and sometimes isolated behind impenetrable walls. Databases, patents, designs, maps, new frontiers and papers (good or bad) are peoples’ work and they are attached to it. Each person, research institute and field of study prefers their own words and don’t care if anyone else knows them, they may even have their own spatial visualizations, and definitely believe they know the best way to fit it all together to decide and show which information is most relevant, interesting or important. Many individuals and institutions entire life’s work is devoted to exactly these tasks – and they know what they are doing so creating a map like this must account for all of these different ways of knowing, techniques and expertise. When all the pieces from every domain are all thrown on the floor together, suddenly, we are asking everyone to cooperate and let other people who do not care or know about the details or relationships of their information to be in charge of what it should look like, act like, and how it should influence or relate to other information around it. If we can work this out, I believe many of the technical challenges will solve themselves.

4

1.4. Which major opportunities do you envision?

Educate and inspire the general public. Make people more curious. Let people look outside their knowledge domain and area of expertise. Get history to quit repeating itself. Learn and discover new things we could not do without a map such as this.

5

BEGINNING OF PART 2 OMITTED UNTIL THE PROTOTYPE IS REALIZED

2.4. Supported User Tasks
The ability to look through other domains information, place your information where you think it belongs then have it reviewed to be argued against, rejected or raised higher according to the collective view of people who understand what you are working on. In the long term, being able to save only the ideas, information and techniques that actually work; and the ability to streamline all digital collections into one interconnected knowledge base accessible to all people from all cultural and intellectual backgrounds.

6

2.5. Data Sets Used
The first set will be created especially to be random and cross cutting against different intellectual/cultural backgrounds and institutional requirements. Subsequent data sets are intended to include digitized art collections, patent specifications and drawings, architectural work, mapping and exploration, large scale databases and new types of digital collections that are not possible yet.

7

2.6. Algorithms Used
Context Driven Topologies, a mathematical and perceptual system based on algebra, knot theory topology, cultural anthropology and art curation where each entity within a group knows where it belongs within the context of each particular group, or arrangement, of digital information. Over time, streamlining overlaps between entities, groups, arrangements, and layers of information will generate new views and associations. The purpose of the prototype is to see if these automatic views and associations actually correspond to the ways that people generate and create work to represent ideas in a variety of artistic and scientific fields.

8

2.7. Sample Maps – WILL UPDATE

2.8. Pros and Cons
Pro- looks like the right overlaps when you are remembering it. Con- The computer just put everything in places, it no longer corresponds to the placement I gave it and cannot be searched.

9

2.9. Planned Work
To develop a prototype of the Context Driven Topology system then present it via papers, conferences and exhibits. Gather feedback from individuals and institutions around the world to consider these views and work requirements in the development and implementation of this system.

10

2.10. Publications

Collecting Patterns that Work for Everything, the International Journal of Dynamical Systems Research, Chaos and Complexity Letters Vol. 1, #2, special issue: Chaos and Complexity in Arts and Architecture

Perceiving Design in Virtual Spaces the International Conference of Mathematics & Design June 7-10, 2004, Buenos Aires, Argentina

Collective Consciousness, Qi and Complexity, Consciousness Reframed 2004 in Beijing, China November 2004. Organized by the Planetary Collegium

Digitizing the Non-Digital in Rethinking History, The Journal of Theory and Practice, published quarterly by Routledge/Taylor&Francis.

Sent September 30, 2004 to katy@indiana.edu and askupin@uno.edu

Share

Context of Codes

According to sustainable design architect William McDonough, in the world of building codes, context is all.

THE HANNOVER PRINCIPLES

1. Insist on the right of humanity and nature to co-exist in a healthy, supportive, diverse and sustainable condition.

500c_coexist.gif
2000 Carbon Atoms in a Diamond Lattice
James R. Morris, C. Z. Wang and K. M. Ho

2. Recognize interdependence. The elements of human design interact with and depend upon the natural world, with broad and diverse implications at every scale. Expand design considerations to recognize even distant effects.

500core

Core by W3C
3. Respect relationships between spirit and matter. Consider all aspects of human settlement, including community, dwelling, industry and trade, in terms of existing and evolving connections between spiritual and material consciousness.

RileyHighSky

High Sky 2 by Bridget Riley, lives at the Neues Museum, Nurnberg, Germany.
4. Accept responsibility for the consequences of design decisions upon human well-being, the viability of natural systems and their right to co-exist.

spatiallayout

Spatial Layout, Deborah MacPherson CAD drawing with SpinnerCropHoudek


5. Create safe objects of long-term value. Do not burden future generations with requirements for maintenance or vigilant administration of potential dangers due to the careless creation of products, processes or standards.

SeaShellCage

SeaShellCage by Dream Geometry at Midcoast.com, Research & Development Through Free Exchange of Ideas.
6. Eliminate the concept of waste. Evaluate and optimize the full life cycle of products and processes to approach the state of natural systems, in which there is no waste.

7. Rely on natural energy flows. Human designs should, like the living world, derive their creative force from perpetual solar income. Incorporate this energy efficiently and safely for responsible use.

8. Understand the limitations of design. No human creation lasts forever, and design does not solve all problems. Those who create and plan should practice humility in the face of nature. Treat nature as a model and mentor, not as an inconvenience to be evaded or controlled.

9. Seek constant improvement by the sharing of knowledge. Encourage direct and open communication between colleagues, patrons, manufacturers and users to link long-term sustainable considerations with ethical responsibility and to reestablish the integral relationship between natural processes and human activity.

The Hannover Principles should be seen as a living document committed to transformation and growth in the understanding of our interdependence with nature so that they may be adapted as our knowledge of the world evolves.

Share