Tag Archives: flow

Physics of Data Flow

Welcome new subscribers!

Last week the Construction Specifications Institute (CSI) Northern Virginia Chapter (CSI NOVA) welcomed scientists from the NIST Fire Research Lab to give a talk about fire simulations and the new test facility.

NIST’s Fire Dynamics Simulator (FDS)

A couple simulations were of just the fires themselves rather than walls, furniture, elevator shafts and other elements that might influence where a fire would move next in a building. The NIST Fire Research lab studies both the effects and relationships of different building materials with fire, and the physics of fire by itself. The physics of fire by itself has some known properties, such as maximum temperatures, and the short SHORT flashover point. The space around a fire is not always needed for better understanding of what a fire is likely to do next.

National Fire Protection Association (2001) from NFPA 1710

Today we have a lot of data moving around the Internet. Behaviors and patterns in the physics of data flow may have properties like maximum temperatures or flashover points in fires.

Ebb and Flow of Box Office Receipts Over the Past 20 Years – at Flowing Data

However it seems like most of these studies only look at the data, rarely the space around. As if the way different areas of the Internet were built, or the composition of various user communities, could influence where data are likely to go next and whether they are likely to spread quickly or slowly smolder. Below is an image about the flow of physics data from CERN, but who is studying the physics of data flow? Or more importantly, structural details about spaces around data, or how more precise configurations might help push relevant information into specific areas that are most conducive to those particular ideas catching on, spreading, and growing… Until at some point, inevitably, even the most gigantic ideas, like fires, will eventually die out. We are still learning about the physics of fire today, the physics of data flow and a better understanding of the life cycle of ideas and information may take many MANY generations of study until the statistics and calculations are relatively accurate, or at least aligned with the unpredictable real world.

Share

Taking Apart and Putting Back Together in a Repeatable Process

The greatest thing about relational databases is they store everything loose in some kind of homogeneous level playing field. It is only be establishing relationships between data that anyone is able to see anything in context. Without context, they are just data. In context they are messages, thoughts, ideas, studies, results, and work products.

If an idea is very complex sometimes it helps to break it down into component parts. Systematically taking it apart to understand what makes this idea tick.

DesignIT Studios

Starship ModelerWikicommons Watch Movement

Taking an idea apart can be very informative. Especially when various parts need to be updated and optimized, continually changing like software releases. If the watch above was wordpress, the Swift theme, and the internet each gear changes sooner or later but the whole watch still needs to work together if it is to continue functioning.  Putting things back together offers it’s own set of challenges.  There is an opportunity to purge elements that are no longer useful during this process. Like a hoarder moving everything out of their house onto the curb then back into the house, maybe some of those items are not worth saving after all. Or fixing a car engine, or someones medical condition, when it is unclear exactly what the problem is but simply by taking it apart and putting it back together, whatever was not working gets repaired.

IDSA Materials and Processes Section

Instructions are needed, parts need to be labeled. A sequence of reassembly is needed to ensure the reassembled whole still is the same. It can be difficult to see how the parts fit together when viewed too close.

Carol Padburg

Because everyone’s perception and experience is different, the exact same elements, in almost exactly the same combination may be understood a different way from different points of view. The receiving end may be “reading something into” what the sender intended. It may not be possible for two different people to consistently see the same things the same ways.

Put Back Together Pictures

However, this is not true for machines like computers or networks like the internet because machines have no prejudices, emotions, or previous experiences.  They simply process the information, break up whole ideas into packets, send them somewhere, another machine puts them back together. For this to be reliable everything on both ends needs to be a repeatable process. It would be so helpful to have a mold with the end result packed in with every packet to ensure consistency. MIT has just started a project to map controversies that may be useful to understand multiple interpretations of the same information.


MIT Mapping Controversies Project

This project is important today because we are surrounded by so many controversies, and so much data, it’s difficult to sort out which parts are actually valid, worth processing, keeping in the information houses where we store things. For example the Washington Post had an article today about the disconnect between science and the general public entitled “Not Blinded by Science, but Ideology” where global warming is a perfect example.

To avoid using information the wrong way, or putting together messages, thoughts, and ideas that may be different than original authors intended, especially while processing the data in emotionless machines – repeatable processes are needed.

BZen Consulting

Info-Sight Partners Actionability Index

Global Wonderware

Today the primary representation of how pieces of information are to be put back together need to work with SQL. Looking at the relationships is usually just miles and miles of code. However, there is a company at http://mkweb.bcgsc.ca who makes Schemaball, a Schema Viewer for SQL Databases where the relationships themselves can be put under a microscope and examined across the whole database in one glance.

It’s curious why geometry proper is not used more often to direct the arc, layouts and relationships. Something like a mold could be useful to ensure the reassembly is 100 percent correct on the receiving end, to match exactly, what the sender intended.

Smooth-On.com

But how would you store and encode that geometry?

Share

Emergent versus Imposed Boundaries

When organizing large quantities of resources and information in the digital world… putting things into groups, determining what goes where and assigning boundaries, it can be helpful to look at the real world for lessons learned.  Imposing boundaries in unnatural locations is bound to fail sooner or later, the results can be disastrous taking generations to overcome.

Take for example Southern Africa. Oceans, mountains, deserts, vegetation and other natural features determined where people lived and worked.

 

Physical Geography and Natural Vegetation
from Exploring Africa at Michigan State University 

Over time, people settled in various areas surrounded by their culture. Learning the best ways to be productive based on the conditions in their area – whether it was a jungle with vast resources or a desert with very few. 

From Africa Expat

Ancient people such as the Shona in modern day Zimbabwe congregated and stuck together in different areas.  Many of these languages and traditions continue today. But these curving, natural, and emergent boundaries don’t match boundaries imposed from outside cultures.

From Wikimedia Commons

Occasionally, an imposed boundary may coincide with a natural boundary such as a river.  More often though, imposed boundaries are designed to work within larger more global schemes, without paying enough attention to the local impact.

From Wikimedia Commons

Anyone can see where arbitrarily drawing lines has gotten us today.  What can be learned from history to avoid similar situations in the fresh, clean, brand new digital world where ideas and information are still patterning out and have no where in particular to belong except where they are emerging as “next to something else” or arranged for convenient, all encompassing, upper level views

Linked Open Data, Colored, as of March 2009

What about situations where digital terrain and intellectual data boundaries are being purposefully laid out. For example Master Web of Science, mapofscience.com and Places & Spaces where navigating the data is like exploring uncharted territory, and Katy Borner and collaborators seek to enable the discovery of new worlds while also marking territories inhabited by unknown monsters.


The difference in the semantic world versus the physical world should be that the digital world has no constraints like rivers or mountains. Eventually all of the layout can be determined.  Attention does need to be paid to where cultures are emerging, and how this can benefit everyone both globally and locally.

 Not only watch how the semantic web is emerging, but to direct it’s flow in productive ways, geared for people in different areas that may vary widely in their density and resources, rather than as one empire. Because that only causes trouble in the long run.

Layout Algorithm, NYU

Data Mining at Information and Visualization

Random Layout Algorithm at Cell System Markup Language (CSML) an XML format for modeling, visualizing and simulating biopathways.

The advantage of paying attention to this is, reaching an appropriate balance between random emergence and directed flow will ultimately serve end users and programmers better than any other option, and the solutions will last for a long time.


Communities of Practice at NASA

Share

Smart Grid / Dumb Grid

Smart Grid versus Dumb Grid.

From TerraWatts.comNew Power for the Planet

Smart Grids Could Power a 21st Century Economy at GovTech.com

Looking at planning documents like those above it seems possible that a Smart Grid could be achieved. However, the reality is some places barely can move power around still.  Whats the best way for these places to be able to leap frog forward, skipping entire generations of innovation, to get directly to a Smart Grid, Smart City, Smart Buildings, Smart Building-to-Grid Interfaces?

Indias Electrical Mess at This Is Just Stupid

Safe Electricity for Slum Residences – A Pilot Project in Paraisopolis, Sao Paolo Brazil, at Leonardo-Energy.org

from DG Draft 9 Graphics Set at Nick’s Public Gallery

Share

Digital Continuity

1738822.jpg

nature-2-rough.jpg

ABOVE: Nature-2 (rough).jpg @ 50% (Gray)
BELOW: Untitled-1 @ 33.3% (Layer 4, Gray)

Both by Bruce MacPherson, work-in-progress sketches for the MathFactory, for Gallagher & Associates Design Proposal

untitled-1.jpg

___________________

Below is the introduction from Time & Bits, Managing Digital Continuity edited by Margaret MacLean and Ben H. Davis, an eternity ago in 1998 for the Getty Research Institute.  The Getty Research Institute is dedicated to furthering knowledge and understanding of the visual arts and aesthetic appreciation through the advancement of long term digital preservation and information exchange techniques to protect our common cultural inheritance.  The book is about an early workshop pondering over new problems with obsolete media and machines impact on the cycle of: capturing, preserving, distributing, representing, and unlocking a real understanding of the meaning of stored data. See the Long Now Foundation Projects for follow on work such as the Rosetta Project.

gettyfigure1.jpg

Workshop Figure 1

This was a very unhappy interface. And small wonder. No doubt this entire virtual environment was being encrypted, decrypted, reencrypted, anonymously routed through satellites and cables, emulated on alien machinery through ill-fitting, out-of-date protocols, then displayed through long-dead graphic standards.  Dismembered, piped, compressed, packeted, unpacketed, decompressed, unpiped and re-membered.  Worse yet, the place was old.  Virtual buildings didn’t age like physical ones but they aged in subtle pathways of arcane decline, in much the way that their owner’s did.

Bruce Sterling, in Holy Fire. Science fiction writer and founder of the Dead Media Project.

gettyfigure2.jpg

Workshop Figure 2

Below from the article Storage Knowledge by Doug Carlston, page 28 Time & Bits: Managing Digital Continuity

– process information is everywhere and, with increasing frequency, it will not be possible to perceive the full expression of the content-creator’s intent if the ability to perceive the process information is lost.

Imagine, if you will, that we are talking about process content that represents the instructions for building a virtual space and populating it with still and animated images tied to sounds.  Even if one could disambiguate the various data forms and figure out what was image, what was sound, and what was descriptive code, the author’s expression is virtually impossible to deduce absent its interpretation via his original processing device.  If in the future it becomes common to create digital wire models of complex inventions and other devices in lieu of written words, we will have an entire body of obviously important process data held hostage to its original interpretation device.

Perhaps in these areas we just have to give it time.  We do seem to have some movement towards standards, numerical bits have been translated in a reasonably consistent way into numerals and letters of the Roman alphabet (and others), a necessary first step toward a process Rosetta Stone.  And there appears to be a compelling universal interest in standardizing the operating systems and chief applications of commonly available computers, although these standards themselves continue to evolve at a hazardous rate.  Perhaps this process will not continue indefinitely, in which case we are confronting merely an interim problem while the universal standards are finally worked out.

___________________

All of this was written before the explosion of the semantic web, online services, and the large scale development of open standards.  Nevertheless, many early concerns raised at the Time & Bits workshop are still valid.  The documentation of places and buildings together with the public information they generate has only just begun.  When will the process information be mature and standardized enough to tell the story of all these people and places over long periods of time?  There are many arguments on OntologForum regarding the utility, accuracy, and even the possibility of universal standards for such large scale processing. Like buildings in the real world, some digital architectures are better than others, some data deserve to be taken better care of and

“there is no constituency representing that body of information”

Margeret MacLean, Setting the Stage, page 33 in Time & Bits: Managing Digital Continuity.

3 images below are from the central garden at the Getty Center in Los Angeles. You can go anywhere, touch anything, get led in directions you want to go anyway, and have tremendous vistas open up around unexpected angles.  There are curves and corners. Only the best materials are used and they are taken care of.  The combination is gorgeous together.  This level of spatial design, execution, and maintenance is needed for an equivalent level of high quality, long term, takes-forever-to-build, semantic web spaces made expressly for the general public.

getty_center_central_garden.jpg

File: Getty Center Central Gardens Wiki Commons

gettygarden.jpg

http://www.panoramio.com/photo/1738822

___________________

Companion Post: Trace Continuous Threads

red2.jpg

Share

Capturing and Communicating Flow

penderecki1 penderecki2 penderecki3

Krzysztof Penderecki communicates flow in his musical compositions through his own annotation system. Eventually his drawings are translated into traditional notes and lines so performers can play the work. But for his own purposes, and maybe to explain the details and overall patterns to performers and patrons – Penderecki’s own system captures his ideas best.

The scores above are from wood s lot, Sinepost, and the gallery of music at WFMU.
A set of images from Mattmo‘s Inspiration Set on Flickr are presented in contrast below. They also capture flow. At one point maybe only to the artist or mathematicians but at some point later, perhaps to others interpreting or performing the work…..maybe even machines performing work that has a flow.

mattmo1mattmo2mattmo3mattmo4mattmo5mattmo6mattmo7mattmo8mattmo9mattmo10mattmo11mattmo12

Share

Context of Codes

According to sustainable design architect William McDonough, in the world of building codes, context is all.

THE HANNOVER PRINCIPLES

1. Insist on the right of humanity and nature to co-exist in a healthy, supportive, diverse and sustainable condition.

500c_coexist.gif
2000 Carbon Atoms in a Diamond Lattice
James R. Morris, C. Z. Wang and K. M. Ho

2. Recognize interdependence. The elements of human design interact with and depend upon the natural world, with broad and diverse implications at every scale. Expand design considerations to recognize even distant effects.

500core

Core by W3C
3. Respect relationships between spirit and matter. Consider all aspects of human settlement, including community, dwelling, industry and trade, in terms of existing and evolving connections between spiritual and material consciousness.

RileyHighSky

High Sky 2 by Bridget Riley, lives at the Neues Museum, Nurnberg, Germany.
4. Accept responsibility for the consequences of design decisions upon human well-being, the viability of natural systems and their right to co-exist.

spatiallayout

Spatial Layout, Deborah MacPherson CAD drawing with SpinnerCropHoudek


5. Create safe objects of long-term value. Do not burden future generations with requirements for maintenance or vigilant administration of potential dangers due to the careless creation of products, processes or standards.

SeaShellCage

SeaShellCage by Dream Geometry at Midcoast.com, Research & Development Through Free Exchange of Ideas.
6. Eliminate the concept of waste. Evaluate and optimize the full life cycle of products and processes to approach the state of natural systems, in which there is no waste.

7. Rely on natural energy flows. Human designs should, like the living world, derive their creative force from perpetual solar income. Incorporate this energy efficiently and safely for responsible use.

8. Understand the limitations of design. No human creation lasts forever, and design does not solve all problems. Those who create and plan should practice humility in the face of nature. Treat nature as a model and mentor, not as an inconvenience to be evaded or controlled.

9. Seek constant improvement by the sharing of knowledge. Encourage direct and open communication between colleagues, patrons, manufacturers and users to link long-term sustainable considerations with ethical responsibility and to reestablish the integral relationship between natural processes and human activity.

The Hannover Principles should be seen as a living document committed to transformation and growth in the understanding of our interdependence with nature so that they may be adapted as our knowledge of the world evolves.

Share

Carbon Dating / Digital Information

TheRooms

The Rooms from Daily Dose of Imagery

Semantic architecture is not like physical architecture because evidence of previous or alternate use is hard to find.  There is little reason to study older digital archiving or exchange requirements.  There is no carbon footprint equivalent to measure over time yet.

gleanings

Theosophical Publishing House   Ideas and information are published, maintained and available, or the only results are a mysterious, unexplained broken link or 404 Error.  Less than 5 percent of previously published, no longer maintained information may continue to have value.  In addition to efforts such as the Wayback Machine to capture everything, there should also be efforts to capture only some things based on patterns and evidence of use so only the most important connections and examples can be preserved even if the individual or organization that instigated this information is no longer around or maintaining their website or database.  Its a major conceptual, mathematical, and artistic problem to work on.  If digital information is to leave footprints, maybe these could mimic carbon in their structure. Carbon1

Allotropes of Carbon   carbon2

Utah scientists find longest Carbon-Carbon Bond.

Even the band Modest Mouse is curious about the persistence and interchangeability of carbon. The song, Parting of the Sensory, is talking about more than the chemical structure.  Select phrases about a different kind of bonding and tracking are below.

Dehydrate back into minerals

A life long walk to the same exact spot

 

Carbon’s anniversary

The parting of the sensory

Old old mystery

The parting of the sensory

 

The weather changed it for the worse

And came down on us like it had been rehearsed

And like we hope, but change will surely come

And be awful for most but really good for some

I took a trip to the exact same spot

We pulled the trigger, but we forgot to cock

And every single shot

 

Some day you will die and

Somehow something’s going to steal your carbon

 

Some day you will die and

Somehow something’s going to steal your carbon

 

Well some day you will die somehow and

Something’s going to steal your carbon

 

Some day you will die and

Someone’s or something’s will steal your carbon

 

Some day something will die and

Somehow you’ll figure out how

Often you will die somehow and

Something going to steal your carbon

 

Well some day you will die somehow and

Something’s going to steal your carbon

Share